An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs
dc.contributor.author | Santhosh, T. V. | |
dc.contributor.author | Gopika, V. | |
dc.contributor.author | Ghosh, A. K. | |
dc.date.accessioned | 2018-12-04T09:54:49Z | |
dc.date.available | 2018-12-04T09:54:49Z | |
dc.date.issued | 2018 | |
dc.description.division | RSD | en |
dc.format.extent | 4663 bytes | |
dc.format.mimetype | text/html | |
dc.identifier.source | Reliability Engineering and System Safety, 2018. Vol. 170: pp. 31-44 | en |
dc.identifier.uri | http://hdl.handle.net/123456789/17360 | |
dc.language.iso | en | en |
dc.subject | Artificial neural networks | en |
dc.subject | Insulation resistance | en |
dc.subject | Accelerated life testing | en |
dc.subject | Weibull reliability | en |
dc.subject | Probabilistic safety assessment | en |
dc.subject | Nuclear power plants | en |
dc.title | An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs | en |
dc.type | Article | en |