A data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in India
dc.contributor.author | Sahoo, B. K. | |
dc.contributor.author | Sapra, B. K. | |
dc.date.accessioned | 2021-01-06T09:00:35Z | |
dc.date.available | 2021-01-06T09:00:35Z | |
dc.date.issued | 2020 | |
dc.description.division | RP&AD | en |
dc.format.extent | 5478 bytes | |
dc.format.mimetype | text/html | |
dc.identifier.source | Chaos, Solitons and Fractals, 2020. Vol. 139: Article no. 110034 | en |
dc.identifier.uri | http://hdl.handle.net/123456789/21762 | |
dc.language.iso | en | en |
dc.subject | COVID-19 | en |
dc.subject | Data driven model | en |
dc.subject | Infected cases | en |
dc.subject | Cross correlation | en |
dc.subject | Time-lag analysis | en |
dc.subject | Least square fitting | en |
dc.subject | Mean recovery time | en |
dc.subject | Prediction | en |
dc.subject | Peak time | en |
dc.subject | End time | en |
dc.subject | Peak infected cases | en |
dc.title | A data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in India | en |
dc.type | Article | en |