A data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in India

dc.contributor.authorSahoo, B. K.
dc.contributor.authorSapra, B. K.
dc.date.accessioned2021-01-06T09:00:35Z
dc.date.available2021-01-06T09:00:35Z
dc.date.issued2020
dc.description.divisionRP&ADen
dc.format.extent5478 bytes
dc.format.mimetypetext/html
dc.identifier.sourceChaos, Solitons and Fractals, 2020. Vol. 139: Article no. 110034en
dc.identifier.urihttp://hdl.handle.net/123456789/21762
dc.language.isoenen
dc.subjectCOVID-19en
dc.subjectData driven modelen
dc.subjectInfected casesen
dc.subjectCross correlationen
dc.subjectTime-lag analysisen
dc.subjectLeast square fittingen
dc.subjectMean recovery timeen
dc.subjectPredictionen
dc.subjectPeak timeen
dc.subjectEnd timeen
dc.subjectPeak infected casesen
dc.titleA data driven epidemic model to analyse the lockdown effect and predict the course of COVID-19 progress in Indiaen
dc.typeArticleen

Click here to download

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
0106.htm
Size:
5.35 KB
Format:
Hypertext Markup Language
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections