Quick Classification and Prediction of CO2, NH3, H2S, and NO2 Gases from Their Mixture Using a ZnO Nanowire-Based Electronic Nose
dc.contributor.author | Sinju, K. R. | |
dc.contributor.author | Bhangare, B. K. | |
dc.contributor.author | Debnath, A. K. | |
dc.contributor.author | Ramgir, N. S. | |
dc.date.accessioned | 2024-11-21T10:31:06Z | |
dc.date.available | 2024-11-21T10:31:06Z | |
dc.date.issued | 2023 | |
dc.description.division | TPD | en |
dc.format.extent | 4794 bytes | |
dc.format.mimetype | text/html | |
dc.identifier.source | Journal of Electronic Materials, 2023. Vol. 52: pp. 4686-4698 | en |
dc.identifier.uri | http://hdl.handle.net/123456789/27757 | |
dc.language.iso | en | en |
dc.subject | ZnO nanowires | en |
dc.subject | electronic nose | en |
dc.subject | principal component analysis (PCA) | en |
dc.subject | linear discriminant analysis (LDA) | en |
dc.subject | support vector machines (SVM) | en |
dc.subject | decision forest (DF) | en |
dc.title | Quick Classification and Prediction of CO2, NH3, H2S, and NO2 Gases from Their Mixture Using a ZnO Nanowire-Based Electronic Nose | en |
dc.type | Article | en |
dc.type | Book | en |