Quick Classification and Prediction of CO2, NH3, H2S, and NO2 Gases from Their Mixture Using a ZnO Nanowire-Based Electronic Nose

dc.contributor.authorSinju, K. R.
dc.contributor.authorBhangare, B. K.
dc.contributor.authorDebnath, A. K.
dc.contributor.authorRamgir, N. S.
dc.date.accessioned2024-11-21T10:31:06Z
dc.date.available2024-11-21T10:31:06Z
dc.date.issued2023
dc.description.divisionTPDen
dc.format.extent4794 bytes
dc.format.mimetypetext/html
dc.identifier.sourceJournal of Electronic Materials, 2023. Vol. 52: pp. 4686-4698en
dc.identifier.urihttp://hdl.handle.net/123456789/27757
dc.language.isoenen
dc.subjectZnO nanowiresen
dc.subjectelectronic noseen
dc.subjectprincipal component analysis (PCA)en
dc.subjectlinear discriminant analysis (LDA)en
dc.subjectsupport vector machines (SVM)en
dc.subjectdecision forest (DF)en
dc.titleQuick Classification and Prediction of CO2, NH3, H2S, and NO2 Gases from Their Mixture Using a ZnO Nanowire-Based Electronic Noseen
dc.typeArticleen
dc.typeBooken

Click here to download

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
0910.htm
Size:
4.68 KB
Format:
Hypertext Markup Language
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections