Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworks
dc.contributor.author | Kancharlapalli, S. | |
dc.contributor.author | Gopalan, A. | |
dc.contributor.author | Haranczyk, M. | |
dc.date.accessioned | 2022-05-12T09:32:33Z | |
dc.date.available | 2022-05-12T09:32:33Z | |
dc.date.issued | 2021 | |
dc.description.division | TCS | en |
dc.format.extent | 4816 bytes | |
dc.format.mimetype | text/html | |
dc.identifier.source | Journal of Chemical Theory and Computation, 2021. Vol. 17: pp. 3052-3064 | en |
dc.identifier.uri | http://hdl.handle.net/123456789/24543 | |
dc.language.iso | en | en |
dc.subject | Fast and Accurate Machine Learning Strategy | en |
dc.subject | Partial Atomic Charges | en |
dc.subject | Metal-Organic Frameworks | en |
dc.subject | periodic density functional theory (DFT) | en |
dc.title | Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworks | en |
dc.type | Article | en |