Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworks

dc.contributor.authorKancharlapalli, S.
dc.contributor.authorGopalan, A.
dc.contributor.authorHaranczyk, M.
dc.date.accessioned2022-05-12T09:32:33Z
dc.date.available2022-05-12T09:32:33Z
dc.date.issued2021
dc.description.divisionTCSen
dc.format.extent4816 bytes
dc.format.mimetypetext/html
dc.identifier.sourceJournal of Chemical Theory and Computation, 2021. Vol. 17: pp. 3052-3064en
dc.identifier.urihttp://hdl.handle.net/123456789/24543
dc.language.isoenen
dc.subjectFast and Accurate Machine Learning Strategyen
dc.subjectPartial Atomic Chargesen
dc.subjectMetal-Organic Frameworksen
dc.subjectperiodic density functional theory (DFT)en
dc.titleFast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworksen
dc.typeArticleen

Click here to download

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
0593.htm
Size:
4.7 KB
Format:
Hypertext Markup Language
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections