|
Author(s) |
Verma, S.; Kumar, A.; Pravarthana, D.; Deshpande, A.; Ogale, S. B.; Yusuf, S. M. (SSPD)
|
Source |
Journal of Physical Chemistry-C, 2014. Vol. 118 (29): pp. 16246-16254 |
ABSTRACT
|
In the present investigation, we report a detailed examination of the effect of off-stoichiometry introduced in NiCo2O4 by adding excess cobalt. Thus, we compare and analyze the structural and magnetic properties of the Ni0.75Co2.25O4 and NiCo2O4 cubic systems. A low temperature combustion method was utilized to synthesize stoichiometric (NiCo2O4) and off-stoichiometric (Ni0.75Co2.25O4)
nanoparticles on a large scale. The X-ray diffraction pattern for the
sample annealed at high temperature (773 K) shows the presence of a much
less intense NiO phase (~2−5%) in Ni0.75Co2.25O4 as compared to that in the case of NiCo2O4 sample (~15−20%). The Ni 2p and Co 2p XPS spectra reveal the coexistence of Ni2+, Ni3+, Co2+, and Co3+ species on the surface of both the NiCo2O4 and Ni0.75Co2.25O4
samples in differing proportions. In addition to the basic magnetic
characterizations using PPMS, these were also analyzed by neutron
diffraction. The off-stoichiometric Ni0.75Co2.25O4
sample shows an interesting magnetic phase conversion from frustrated
dipolar system to an enhanced magnetic ordering upon annealing. Local
moments on the lattice sites of NiCo2O4 and Ni0.75Co2.25O4
samples are further compared by neutron diffraction confirming stronger
ordered moments and enhanced structural and thermal stability for the
Ni0.75Co2.25O4 sample. |
|
|
|