BARC/PUB/2018/0926

 
 

Phase separation and effect of strain on magnetic properties of Mn3Ga1-xSnxC

 
     
 
Author(s)

Dias, E. T.; Das, A.; Hoser, A.; and others
(SSPD)

Source

Journal of Applied Physics, 2018. Vol. 124: Article no. 153902

ABSTRACT

While the unit cell volume of compounds belonging to the Mn3Ga1-xSnxC (0 ≤ x ≤ 1) series shows a conformity with Vegard’s law, their magnetic and magnetocaloric properties behave differently from those of parent compounds Mn3GaC and Mn3SnC. A correlation between the observed magnetic properties and underlying magnetic and local structure suggests that replacing Ga atoms by larger atoms of Sn results in the formation of Ga-rich and Sn-rich clusters. As a result, even though the long range structure appears to be cubic, Mn atoms find themselves in two different local environments. The packing of these two different local structures into a single global structure induces tensile/compressive strains on the Mn6C functional unit and is responsible for the observed magnetic properties across the entire solid solution range.

 
 
SIRD Digital E-Sangrahay