The relaxation process of a single two-level atom driven by an intense resonant coherent field is studied in the presence of a broadband squeezed vacuum field. Generalized forms for the self-field operator and the field-dependent damping coefficients are derived. In the steady state, positive atomic inversion (∼5%) is shown for some range of the phase of the squeezed vacuum field. The squeezing-induced enhanced and asymmetric coherence (i.e. non-zero dispersive atomic polarization) induces profound asymmetry in the side-bands of the Mollow fluorescent spectrum and the absorptive–dispersive spectra near the Rabi side-band frequencies. The case of two and three cooperative atoms, instead of a single atom, shows (i) positive atomic inversion in the steady state for larger interval of the squeeze phase parameter and more enhanced extrema for the atomic polarization components and (ii) the extra side peaks in the fluorescent spectrum become asymmetric and of dispersive-like profile. Dressed-state analysis in the single-atom case with the field-dependent decay process in the presence of the squeezed vacuum field is presented and shows that the inequality of the (field-dependent) decay rates of the dressed states leads to more positive inversion in the dressed states as compared with the normal vacuum case.