BARC/PUB/2018/1103

 
 

Comparative Evaluation of Using NOTA and DOTA Derivatives as Bifunctional Chelating Agents in the Preparation of 68Ga-Labeled Porphyrin: Impact on Pharmacokinetics and Tumor Uptake in a Mouse Model

 
     
 
Author(s)

Guleria, M.; Das, T.; Amirdhanayagam, J.; Sarma, H. D.; Dash, A.
(RPhD;RB&HSD)

Source

Cancer Biotherapy and Radiopharmaceuticals, 2018. Vol. 33 (1): pp. 8-16

ABSTRACT

Purpose: Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs.

Procedures: A symmetrical porphyrin derivative, 5,10,15,20-tetrakis (p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH2-benzyl-NOTA and p-NH2-benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model.

Results: Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies.

Conclusion: The present study demonstrates that the pharmacokinetic behavior of 68Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68Ga-based PET agents for imaging of tumorous lesions.

 
 
SIRD Digital E-Sangrahay