BARC/PUB/2011/0882

 
 

Relevance of Thermodynamic and Kinetic Parameters of Chemical Vapor Deposition Precursors

 
     
 
Author(s)

Selvakumar, J.; Nagaraja, K. S.; Sathiyamoorthy, D.

Source

Journal of Nanoscience & Nanotechnology, 2011. Vol. 11 (9): pp. 8190-8197

ABSTRACT

We have studied various metallorganic and organometallic compounds by simultaneous nonisothermal thermogravimetric and differential thermogravimetric analyses to confirm their volatility and thermal stability. The equilibrium vapor pressures of the metallorganic and organometallic compounds were determined by horizontal dual arm single furnace thermoanalyzer as transpiration apparatus. Antoine coefficients were calculated from the temperature dependence equilibrium vapor pressure data. The model-fitting solid-state kinetic analyses of Al(acac)3, (acac = acetylacetonato), Cr(CO)6, Fe(Cp)2, (Cp-cyclopentadienyl), Ga(acac)3, Mn(tmhd)3, and Y(tmhd)3 (tmhd = 2,2,6,6,- tetramethyl-3,5-heptanedionato) revealed that the processes follow diffusion controlled, contracting area and zero order model sublimation or evaporation kinetics. The activation energy for the sublimation/evaporation processes were calculated by model-free kinetic methods. Thin films of nickel and lanthanum-strontium-manganite (LSM) are grown on silicon substrate at 573 K using selected metallorganic complexes of Ni[(acac)2en], La(tmhd)3, Sr(tmhd)2 and Mn(tmhd)3 as precursors by plasma assisted liquid injection chemical vapor deposition (PA-LICVD). The deposited films were characterized by scanning electron microscopy and energy dispersive X-ray analysis for their composition and morphology.

 
 
SIRD Digital E-Sangrahay