Aluminum, iron and zinc containing MCM-41 molecular sieves were prepared by the hydrothermal method. The catalyst was characterized by the XRD, BET (surface area), FT–IR and 29Si, 27 Al MAS–NMR techniques. The catalytic activity of these molecular sieves was tested with esterification reaction used with phthalic anhydride (PAH) and methanol (MeOH) in the autoclave at 135oC, 150oC and 175oC. Conversion increases with an increase in temperature and mole ratio. The activity of these catalysts followed the order: Al-MCM-41 (112) > Fe-MCM-41 (115) > Al-MCM-41 (70) > Al-MCM-41 (52) > Fe-MCM-41 (61) > Al, Zn-MCM-41 (104) > Al-MCM-41 (30). The reaction yielded both monomethyl phthalate (MMP) and dimethyl phthalate (DMP). The nature of the catalyst sites has been proposed using with water as an impurity. The selectivity of the dimethyl phthalate increases with increase in temperature and mole ratio. The weight of the catalyst was optimized at 0.07g. The hydrophilic and hydrophobic nature of the catalyst has been explained by the influence of water and the external surface acidity also facilitates the reaction and this has been confirmed by the supporting reaction.