BARC/PUB/2013/1301

 
 

How universal are hydrogen bond correlations? A density functional study of intramolecular hydrogen bonding in low-energy conformers of α-amino acids

 
     
 
Author(s)

Ramaniah, L. M.; Kamal, C.; Kshirsagar, R. J.; Chakrabarti, A.; Banerjee, A.
(HP&SRPD)

Source

Molecular Physics, 2013. Vol. 111 (20): pp. 3067-3076

ABSTRACT

Hydrogen bonding is one of the most important and ubiquitous interactions present in Nature. Several studies have attempted to characterise and understand the nature of this very basic interaction. These include both experimental and theoretical investigations of different types of chemical compounds, as well as systems subjected to high pressure. The O–H..O bond is of course the best studied hydrogen bond, and most studies have concentrated on intermolecular hydrogen bonding in solids and liquids. In this paper, we analyse and characterise normal hydrogen bonding of the general type, D–H...A, in intramolecular hydrogen bonding interactions. Using a first-principles density functional theory approach, we investigate low energy conformers of the twenty α-amino acids.Within these conformers, several different types of intramolecular hydrogen bonds are identified. The hydrogen bond within a given conformer occurs between two molecular groups, either both within the backbone itself, or one in the backbone and one in the side chain. In a few conformers, more than one (type of) hydrogen bond is seen to occur.

Interestingly, the strength of the hydrogen bonds in the amino acids spans quite a large range, from weak to strong. The signature of hydrogen bonding in these molecules, as reflected in their theoretical vibrational spectra, is analysed. With thenew first-principles data from 51 hydrogen bonds, various parameters relating to the hydrogen bond, such as hydrogen bond length, hydrogen bond angle, bond length and vibrational frequencies are studied. Interestingly, the correlation between these parameters in these bonds is found to be in consonance with those obtained in earlier experimental studies of normal hydrogen bonds on vastly different systems. Our study provides some of the most detailed first-principles support, and the first involving vibrational frequencies, for the universality of hydrogen bond correlations in materials.

 
 
SIRD Digital E-Sangrahay